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Classical Heisenberg model of magnetic molecular ring clusters:
Accurate approximants for correlation functions and susceptibility
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Department of Physics, Naval Postgraduate School, Monterey, California 93943
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~Received 3 September 1997; accepted 30 January 1998!

We show that the measured magnetic susceptibility of molecular ring clusters can be accurately
reproduced, for all but low temperaturesT, by a classical Heisenberg model ofN identical spinsS
on a ring that interact with isotropic nearest-neighbor interactions. While exact expressions for the
two-spin correlation function,CN(n,T), and the zero-field magnetic susceptibility,xN(T), are
known for the classical Heisenberg ring, their evaluation involves summing infinite series of
modified spherical Bessel functions. By contrast, the formulaCN(n,T)5(un1uN2n)/(11uN),
where u(K)5cothK2K21 is the Langevin function andK5JS(S11)/(kBT) is the
nearest-neighbor dimensionless coupling constant, provides an excellent approximation ifN>6 for
the regime uKu,3. This choice of approximant combines the expected exponential decay of
correlations for increasing yet small values ofn, with the cyclic boundary condition for a finite ring,
CN(n,T)5CN(N2n,T). By way of illustration, we show that, forT.50 K, the associated
approximant for the susceptibility derived from the approximate correlation function is virtually
indistinguishable from both the exact theoretical susceptibility and the experimental data for the
‘‘ferric wheel’’ molecular cluster (@Fe~OCH3!2~O2CCH2Cl!#10), which containsN510 interacting
Fe31 ions, each of spinS55/2, that are symmetrically positioned in a nearly planar ring. ©1998
American Institute of Physics.@S0021-9606~98!02317-4#
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I. INTRODUCTION

Recent advances in the fabrication of molecular magn
portend an unprecedented ability to control the placemen
magnetic moments in molecular structures and hence to
sign and produce nanometer-scale magnetic systems.1,2 A
wide variety of molecular clusters containing relatively sm
numbers of magnetic ions~e.g., as few as four! can now be
fabricated3,4 and these provide novel systems in which to t
basic theories of magnetism and offer the prospect of n
applications. Quite often the magnetic moments are s
metrically positioned in a simple ring structure within th
host cluster, as in the ‘‘ferric wheel’’ molecule,4 where each
cluster contains ten Fe31 ions of spinS55/2 that define a
nearly planar ring. Ring-shaped magnetic nanostructures
provide a new class of materials in which to test on
dimensional models of magnetism.5 Materials containing
very long chains of magnetic atoms, such as TMMC, have
course long been known.6 Ring nanomagnets, however, a
sufficiently small that the effects of the cyclic geometry c
manifest in the experimentally observed magnetic propert
In applying ‘‘one-dimensional’’ models, therefore, one mu
distinguish theoretical results in which cyclic boundary co
ditions are employed from those for open chains.7 Only for
sufficiently large systems, of course, does the nature of
boundary condition become immaterial. For the abo
mentioned ferric-wheel system, it has been remarked4 that a

a!Also at: Department of Physics, University of Pavia, Italy.
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quantum-mechanical determination of the allowed ene
levels of this ring of ten interactingS55/2 spins exceeds th
capability of present-day computers. This clearly und
scores the need for simplified yet realistic ‘‘mesoscopi
models of ring nanomagnets. Furthermore, it is importan
establish the lowest temperature, for given spinS, that a
classical treatment of interacting spins suffices.

The purpose of this article is twofold. We show, exce
for low temperatures where quantum effects dominate,
an approximate,classical treatment of interacting Heisen
berg spins can provide results for the magnetic susceptib
of small ring structures in excellent agreement with expe
ment. We illustrate this explicitly with susceptibility data8

from the ferric wheel molecular cluster; we have, howev
also analyzed susceptibility data from several other ring m
lecular clusters and likewise find close agreement betw
experiment and the classical theory for all but lo
temperatures.9 The second purpose of this article is
present simple analytic approximants for the two-spin cor
lation function, CN(n,T)5^êi•êi 1n&N , and the zero-field
magnetic susceptibility,xN(T), for a ring of N classical
Heisenberg spins that are valid for all but low temperatur
~As explained in Sec. II A, a classical spin at sitei is de-
scribed by a unit vector,êi , free to point in any direction.!
While exact expressions for these quantities have b
derived,10 evaluating these expressions entails the sum
tion of infinite series of modified spherical Bessel function
These series are such that, for progressively lower temp
tures, increasingly more terms must be included in the s
6 © 1998 American Institute of Physics

 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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to achieve good accuracy. Besides the tedium of summ
large numbers of modified spherical Bessel functions, co
puting these functions in the large-argument, large-order
gime will usually trigger numerical instabilities unless sp
cific countermeasures are employed.11 By contrast, for the
associatedopenchain of classical Heisenberg spins, the e
pressions for the correlation function and susceptibility
extremely simple.12 Physically motivated,approximateex-
pressions for these quantities for the ring, of compara
simplicity with those for the open chain, would therefore
highly desirable.

We find that the formula CN(n,T)5@nn(N,K)
1nN2n(N,K)#/@11nN(N,K)# provides an excellent ap-
proximation for the correlation function, wheren(N,K) is an
appropriately chosen function andK5JS(S11)/(kBT) is
the dimensionless nearest-neighbor coupling constant. N
that this approximant: First, incorporates exponential de
of correlations, which is to be expected for small, increas
values ofn; second, satisfies the cyclic boundary conditi
for the correlation function associated with a finite rin
CN(n,T)5CN(N2n,T); and, third, satisfies the requireme
thatCN(0,T)51, which follows from the fact thatêi is a unit
vector. We note that ifn!N, the values ofCN(n,T) for a
ring should differ negligibly from that for an open chain, fo
which the correlation function is given by12 CN

chain(n,K)
5un(K), independent ofN, whereu(K)[cothK2K21 de-
notes the Langevin function. Now, forn!N, our approxi-
mant is essentially given bynn(N,K), suggesting that ifN
@1 we haven(N,K)'u(K). This leads to our simplest
least accurate choice,n(N,K)5u(K) for all values ofN. @A
procedure for selecting more accurate forms ofn(N,K) is
given in Sec. III.# Even for this simplest choice, howeve
i.e., n(N,K)5u(K), we find that the resulting approximan
provides excellent results foruKu,3 as long asN>6. We
also find that the associated result for the zero-field sus
tibility, xN(T), derived from the approximate correlatio
function, is in excellent numerical agreement with both t
exact susceptibility, and, forT.50 K, with experimental
data for the molecular ferric wheel. We note that below a
proximately 40 K this system cannot be accurately descri
by the classical Heisenberg model. Thus, in comparing w
experiment, there is no advantage gained in utilizing the
act susceptibility of the classical Heisenberg model rat
than the much simpler approximate formula@see Eq.~3.5!#
which is based on the above choice,n(N,K)5u(K).
Elsewhere,13 we provide estimates for the lowest temperatu
for which results derived using the classical Heisenb
model can accurately approximate a ring ofN spinsS de-
scribed by the quantum Heisenberg model.

This article is organized as follows. In the next secti
we briefly review some of the exact thermodynamic prop
ties of classical Heisenberg rings. In Sec. III we present
approximants for the correlation function and magnetic s
ceptibility. The predictions of these approximants are th
compared to exact results. Finally, in Sec. IV we comp
our results for the susceptibility with experimental data
the molecular ferric wheel. It is our hope that the pres
work will simplify the analytical treatment of small Heisen
Downloaded 09 Apr 2001 to 147.155.4.75. Redistribution subject
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berg rings and thus aid both in understanding and develop
nanomagnets.

II. EXACT RESULTS

A. Classical Heisenberg model

To fix the notation, the quantum Heisenberg model ofN
identical spins on a ring with isotropic nearest-neighbor
teractions is written as

H52J(
i 51

N

Si•Si 112mB•(
i 51

N

Si . ~2.1!

The Si are quantum spin operators in units of\, with SN11

[S1 , J is the exchange interaction energy,B is the external
magnetic field, andm52gmB , with g the Lande´ g factor
andmB the Bohr magneton. We note that (J,0) J.0 pro-
motes ~anti-! ferromagnetic ordering at low temperature
We will explore the properties of the classical counterpart
Eq. ~2.1! obtained by replacing the quantum spin operat
with classical vectors of lengthAS(S11) that are free to
point in any direction. RescalingJ by J→Jc[S(S11)J and
m by m→mc[mAS(S11) results in then53 version of the
n-vector model for spins on a ring,

Hc52Jc(
i 51

N

êi•êi 112mcB•(
i 51

N

êi , ~2.18!

whereêN11[ê1 . In what follows we considerB50.

B. Correlation functions

The two-spin correlation function for theN-spin ring is
given by

CN~n,T!5^êi•êi 1n&N[ZN
21E dG exp~2bHc!êi•êi 1n ,

~2.2!

where b[(kBT)21, dG[P i 51
N (dV i /4p), with dV i

5sinui dui dfi the element of solid angle aboutêi , and
where ZN is the partition function,ZN5*dG exp(2bHc).
For a finite ring with translational symmetry, the correlatio
function must satisfy the cyclic property,

CN~n,T!5CN~N2n,T!. ~2.3!

For zero magnetic field, Joyce10 has derived an expressio
for the correlation function as a double infinite series invo
ing modified spherical Bessel functions and the Wign
3 j -symbol,

CN~n,K !5ZN
21 (

l 150

`

(
l 250

`

~2l 111!~2l 211!

3 f l 1
n ~K ! f l 2

N2n~K !S l 1

0
l 2

0
1
0D 2

, ~2.4!

where f l(K)[Ap/(2K)I l 1(1/2)(K) is the modified spherica
Bessel function of orderl . The functionsf l(K) decay ex-
tremely rapidly with increasingl for l .uKu. Thus for nu-
merical calculations, the higher the temperature, the fe
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the terms of Eq.~2.4! that are required to be summed. Joy
has also shown10 that for zero magnetic field the partitio
function may be written as an infinite series

ZN~K !5(
l 50

`

~2l 11! f l
N~K !. ~2.5!

We now simplify Eq.~2.4! as well as derive a number o
useful new results. We first show that Eq.~2.4! can be writ-
ten in such a form as to manifestly satisfy Eq.~2.3!. The
only14 nonzero 3j -symbols of the type appearing in Eq.~2.4!
are given by15

S a
0

a11
0

1
0D 2

5S a11
0

a
0

1
0D 2

5
a11

~2a11!~2a13!
, ~2.6!

wherea is an integer. Using Eq.~2.6!, the double sum in Eq
~2.4! reduces to a single infinite sum and one obtains

CN~n,K !5ZN
21(

l 50

`

~ l 11! f l
N~K !@r l

n~K !1r l
N2n~K !#,

~2.7!

wherer l(K)[ f l 11(K)/ f l(K). It thus follows at once from
Eq. ~2.7! that the cyclic property Eq.~2.3! is obeyed. It will
now be useful to obtain theN→` limit of Eq. ~2.7!, for fixed
values ofn. By first dividing out f 0

N from the two infinite
series appearing in Eq.~2.7!, which includesZN as given by
Eq. ~2.5!, and using the property thatur l(K)u,1, the limit
N→` can readily be taken, with the result

Lim
N→`

CN~n,K !5r0
n~K ![un~K !, ~2.8!

where

u~K ![I 3/2~K !/I 1/2~K !5coth K2K21 ~2.9!

is the Langevin function. For theinfinite ring, therefore, the
decay of the correlation function is exclusively exponent
with a correlation lengthj given by j2152 ln@ucothK
2K21u#. In the limit N→`, the correlation function should
of course be independent of the nature of the boundary c
ditions. Indeed, the result in this limiting case is consist
with Fisher’s finding12 that for the open chain of classica
Heisenberg spins,

CN
chain~n,K !5un~K !, ~2.10!

independent ofN.
We now list several additional exact results. The fun

tions f l(K) have the parity property thatf l(2K)
5(21)l f l(K) and hence thatr l(2K)52r l(K). It then fol-
lows that for a ring with N even, CN(n,2K)
5(21)nCN(n,K). For oddN, however, there is no analo
gous relation between the correlation functions for ferro- a
antiferromagnetic couplings. We also note that the result
~2.7!, in the special casen50, can be shown to satisfy th
requirement thatCN(0,K)51. Finally, we remark that one
can directly obtain analytic expressions in closed form
Z2 , Z3 , C2(1), and C3(1)5C3(2) by starting from Eqs.
~2.18!, ~2.2!, and the definition of the partition function. Th
Downloaded 09 Apr 2001 to 147.155.4.75. Redistribution subject
l,

n-
t

-

d
q.

r

results for N52 are Z2(K)5sinh(2K)/(2K) and C2(1,K)
5u(2K). Identical results emerge from the series expa
sions~2.5! and~2.7!, respectively, which can be summed f
this special value ofN. We demonstrate this forZ2 by uti-
lizing the following special case of the Gegenbauer addit
theorem for Bessel functions:16

sin v

v
5

p

AZz
(
l 50

` S l 1
1

2D Jl 1~1/2!~Z!Jl 1~1/2!~z!

3Pl~cosf!, ~2.11!

where v5AZ21z222Zz cosf and Pl denotes the Leg-
endre polynomial. SelectingZ5z5 iK andf5p, and using
the fact thatJl 1(1/2)( iK )5exp@i(p/2)(l 1 1

2)#I l 1(1/2)(K) for
real K, one readily finds that

Z2~K !5(
l 50

`

~2l 11! f l
2~K !5

sinh~2K !

2K
, ~2.12!

as claimed. The expressions forZ3 andC3(1) are somewhat
lengthy and are given in Ref. 13.

C. Susceptibility

The zero-field susceptibilityper spincan be written as

xN~K !5~bmc
2/3!x̃N~K !, ~2.13a!

where

x̃N~K ![N21 (
i , j 51

N

^êi•êj&N . ~2.13b!

For sufficiently high temperatures, where all the spins
uncorrelated, the quantityx̃N approaches unity and Eq
~2.13a! reduces to the statement of Curie’s law. Using t
representation~2.7! of the correlation function, one ca
readily derive the following expression forx̃N(K):

x̃N~K !5112ZN
21(

l 50

`

~ l 11!F f l
Nf l 112 f l f l 11

N

f l2 f l 11
G . ~2.14!

We now examine several special cases of Eq.~2.14!. First,
considering the limitN→` in Eq. ~2.14!, it can be shown
that

Lim
N→`

x̃N~K !5
11u~K !

12u~K !
. ~2.15!

This form for the susceptibility is common to infinite, one
dimensional models with an exponentially decaying corre
tion function, where the parameteru can be identified in
terms of the correlation length,uuu5exp(2j21). We also
note that for the caseN52, it can be shown that Eq.~2.14!
reduces to the correct expressionx̃2(K)511u(2K), which
follows directly from Eq. ~2.13b!. Finally, for N51, Eq.
~2.14! reduces to unity and hence we havex15bmc

2/3,
which is the correct zero-field susceptibility for a single pa
magnetic spin.

We note that the susceptibility per spin for the associa
N-spin open chain can be obtained by substituting Eq.~2.10!
into Eq. ~2.13b!, with the result
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



he
r

ag
ili

is
f

he
as

-

and

ing
ds
r
-
rd

odd
av-
is
i-

-
be
g

, a
um
hese

le
on

x-
s
ion
o-

of
of

if

the
ect
ited
en-

in
as
ol

ns
q
.

g
et
of

an

ange,
q.

7269J. Chem. Phys., Vol. 108, No. 17, 1 May 1998 Luscombe, Luban, and Borsa
x̃N
chain~K !5

11u

12u
2

2u

N

12uN

~12u!2 . ~2.16!

Obviously, by lettingN→` in Eq. ~2.16!, we correctly re-
cover Eq.~2.15!. One can check that Eq.~2.16! reproduces
the correct expressions forN51,2, namely,x̃1

chain51 and
x̃2

chain(K)511u(K).
Using the above formulas, we display in Figs. 1–3 t

zero-field susceptibility per spin for classical Heisenbe
rings and chains for both ferromagnetic and antiferrom
netic interactions. In each of these figures the susceptib
per spin is given in units ofmc

2/(3uJcu). In Fig. 1 results are
shown for the caseJ.0. The major feature to observe
that, for both chains and rings, already for small values oN
the results very nearly coincide with those forN→`. In Fig.
2 we display results for the caseJ,0 and forevenvalues of
N. Note that, for the case of the rings, the results for finiteN
very quickly converge to that forN→`. A very different
behavior occurs for finite chains. It is noteworthy that for t
chains, the dependent variable approaches unity in all c
in the low temperature limit. Note also that only forN
.1000 have the results converged to that forN→`, and
then only if kBT/uJcu is not too small. In Fig. 3 we demon

FIG. 1. Zero-field magnetic susceptibility per spin, for rings and cha
consisting ofN spins interacting with ferromagnetic nearest-neighbor cl
sical isotropic Heisenberg exchange. Proceeding from left to right, the s
curves are for rings~N54, 6, 8, 10,̀ ! and the dashed curves are for chai
~N54, 6, 8!. The values of the susceptibility were obtained using E
~2.13a! along with Eqs.~2.14! and~2.16! for rings and chains, respectively

FIG. 2. Zero-field magnetic susceptibility per spin, for chains and rin
consisting of an even number of spins interacting via antiferromagn
nearest-neighbor classical isotropic Heisenberg exchange. The values
susceptibility were obtained using Eq.~2.13a! along with Eqs.~2.14! and
~2.16! for rings and chains, respectively.
Downloaded 09 Apr 2001 to 147.155.4.75. Redistribution subject
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strate the differences between rings composed of even
odd values ofN when J,0. Only for even values ofN is
there a common low-temperature limit, 0.5. For increas
odd values ofN, the curves decrease monotonically towar
the limiting curve for N→`. By contrast, the curves fo
increasing even values ofN monotonically approach the lim
iting curve from below. The overall behavior is in acco
with the expectation that for sufficiently large values ofN
there cannot be any difference between an even and
number of spins. Put differently, the low-temperature beh
ior for small rings consisting of an odd number of spins
dominated by frustration effects. Frustration is a predom
nant feature especially forN53. For this system, the low
temperature limit of the correlation function turns out to
given by^ê1•ê2&521/2, which translates to each spin bein
oriented 120° with respect to its neighbors. In Ref. 13
detailed discussion is given on frustration effects in quant
and classical Heisenberg rings, and the dependence of t
effects onN andS.

III. APPROXIMANTS

A. Correlation functions

In this and the following subsection we present simp
approximate formulas for the two-spin correlation functi
CN(n,K) and the susceptibilityxN(K) for a classical Heisen-
berg ring ofN spins and compare these with the exact e
pressions~2.7! and ~2.14! given in the previous section. A
stated in the Introduction, we anticipate that the correlat
function for a ring of spins should initially incorporate exp
nential decay with increasingn as well as fulfill the cyclic
condition Eq.~2.3!. Proceeding from a given sitei to a site
i 1n on the ring, in keeping with the exponential decay
correlations that is well known to occur for an open chain
Ising or Heisenberg spins, the spin correlation function^êi

•êi 1n& should display similar decay. On the other hand,
one draws a diameter of the ring through sitei , it is clear that
spin i should be correlated in the same way with each of
pairs of spins that are positioned symmetrically with resp
to that diameter. Both of these features are in fact exhib
by each individual term contributing to the series repres

s
-
id

.

s
ic
the

FIG. 3. Zero-field magnetic susceptibility per spin for rings consisting of
even~solid curves! and odd~dashed curves! number of spins interacting via
antiferromagnetic nearest-neighbor classical isotropic Heisenberg exch
for N53 – 11,̀ . The values of the susceptibility were obtained using E
~2.13a! along with Eq.~2.14!.
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tation ~2.7! of the exact correlation function. Each term
the infinite series consists of two subterms, one of whi
r l

n(K), decays with increasingn, while the other,r l
N2n(K),

grows with increasingn.
Seeking thesimplestpossible mathematical form em

bodying these twin requirements, we are led to approxim
the correlation function by

CN~n,K !5@nn~N,K !1nN2n~N,K !#/@11nN~N,K !#,

~3.1!
wheren(N,K) is some appropriately chosen function of t
coupling constantK and N. Without any loss of generality
we may suppose that the magnitude ofn(N,K) is less than
unity, since the right-hand side of Eq.~3.1! is invariant under
the substitutionn(N,K)→1/n(N,K). We note that Eq.~3.1!
preserves the identityCN(0,K)51. In order to meet the
large-system limit, Eq.~2.8!, we must have

lim
N→`

n~N,K !5u~K !, ~3.2!

whereu(K) is the Langevin function, Eq.~2.9!. This sug-
gests that the simplest version of Eq.~3.1! would consist of
adopting the choicen(N,K)5u(K) for sufficiently largeN.
In fact, as shown below, the resulting approximate corre
tion function performs very well forN>6 as long asuKu
,3, i.e., for sufficiently high temperatures. We adopt th
approach in the following subsection as well as in Sec.
where we find that we can accurately reproduce the exp
mental data for the zero-field susceptibility of the molecu
ferric wheel (N510) for temperatures above 50 K. On th
other hand, the selection forn(N,K) must surely depend on
N for sufficiently small values ofN. This is most readily
demonstrated forN52. Suppose that we choose the functi
n(2,K) by requiring that Eq.~3.1!, for N52 andn51, co-
incide with the exact resultC2(1,K)5u(2K). In this case
one finds that

n~2,K !5
12A12u2~2K !

u~2K !
. ~3.3!

In Fig. 4, the curves labeled 2 and̀ correspond, respec

FIG. 4. The functionsn(N,K) for N52,6,10,̀ as obtained using~3.4!,
where CN(N/2,K) is the exact correlation function for a pair of spins
opposite ends of a diameter of a rings ofN spins. The functionsn(2,K) and
n(`,K) are given by Eqs.~3.3! and ~3.2!, respectively, whileC6(3,K) and
C10(5,K) have been calculated using Eq.~2.7!.
Downloaded 09 Apr 2001 to 147.155.4.75. Redistribution subject
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tively, to n(2,K), given by Eq.~3.3!, andu(K), as functions
of K.

An improved procedure for selecting the form
n(N,K), as compared to usingn(N,K)5u(K) for all N,
then consists of the following. We limit our attention to eve
values ofN and require that our approximate formula, E
~3.1!, coincide with the exact values ofCN(N/2,K), as com-
puted from Eq.~2.7!, for all values ofK. Imposing this re-
quirement provides a quadratic equation for the quan
@n(N,K)#N/2 and thereby fixes the form ofn(N,K) as

n~N,K !5F12A12@CN~N/2,K !#2

CN~N/2,K !
G2/N

. ~3.4!

@Note that this formula includes the result Eq.~3.3! for
n(2,K) as a special case.# We then compare the prediction
of Eq. ~3.1! with those of the exact formula, Eq.~2.7!, for
n51,...,(N/2)21, using the choice Eq.~3.4! for n(N,K).
Using Eq. ~3.4! for N56,10 leads to the curves shown
Fig. 4 along with the exact functionsn(2,K) and n(`,K).
The most striking feature of this plot is that except for lo
temperatures (uKu.3) there is very little difference betwee
the three functionsn(6,K), n(10,K), andn(`,K). That is,
the crudest approximation, of adopting the quantityn(`,K)
5u(K) for n(N,K), performs very well for allN>6 in the
temperature rangeuKu,3. Of course, the larger the value o
N, the larger temperature range over which this approxim
tion is successful.

We now examine the error that arises in using Eq.~3.1!
in conjunction with Eq.~3.4! to approximate the exact cor
relation function. In Tables I and II we list exact as well
approximate values ofC6(n,K) for n51,2,3 andC10(n,K)
for n51,...,5 for the relatively low temperatureuKu510 as
well as for uKu51,2. The agreement is excellent and im
proves significantly as one considers higher temperatu
We have not discussed the quality of the fit provided by E
~3.1! for uKu.10 since the replacement of the underlyin
quantum Heisenberg model, Eq.~2.1!, by the classical
Heisenberg model, Eq.~2.18!, must be invalid at sufficiently
low temperatures. The purpose of using Eq.~3.4! is to ex-
plore in principle to what extent is then-dependence of the
correlation function satisfactorily described by the function
form Eq. ~3.1!. We have just seen that this approach do
indeed provide a very accurate fit to the exact values
CN(n,K). However, for practical work, forN>6 one can

TABLE I. Correlation functionsCN(n,K) for N56. For each value ofK the
entries of the first row are obtained using the approximation~3.1!, where
v(6,K) is chosen according to Eq.~3.4!. The entries of the second row ar
calculated using the exact series expansion~2.7!.

K C6(1,K) C6(2,K) C6(3,K)

1 0.315589 0.107381
0.315517 0.107364 0.06120426

2 0.561149 0.354165
0.559293 0.353548 0.2935233

10 0.916467 0.867577
0.915634 0.867250 0.851484
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloade
TABLE II. Correlation functionsCN(n,K) for N510. For each value ofK the entries of the first row are
obtained using the approximation~3.1!, wherev(10,K) is chosen according to Eq.~3.4!. The entries of the
second row are calculated using the exact series expansion~2.7!.

K C10(1,K) C10(2,K) C10(3,K) C10(4,K) C10(5,K)

1 0.313034 9.8081831022 3.0968631022 1.0543031022

0.313059 9.8081331022 3.0968531022 1.0542931022 6.0115431023

2 0.539578 0.294630 0.167339 0.106873
0.539252 0.294407 0.167242 0.106850 8.9085531022

10 0.910611 0.843233 0.796236 0.768485
0.908610 0.841284 0.795120 0.768170 0.759308
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skirt the task of computingCN(N/2,K) which is needed in
Eq. ~3.4!, and instead use Eq.~3.1! in conjunction with the
simplified choicen(N,K)→u(K).

B. Susceptibility

We now calculate the zero-field susceptibility using t
approximate correlation function~3.1! for the simplest
choicen(N,K)5u(K). Simple algebra yields the following
result for the reduced susceptibilityx̃N(K) of Eq. ~2.13b!:

x̃N~K !5
@11u~K !#@12uN~K !#

@12u~K !#@11uN~K !#
. ~3.5!

In the following section we compare exact numerical valu
of x̃N(K), obtained using Eq.~2.14!, with those obtained
using Eq.~3.5!. Both sets of results are also compared
experimental data for the ferric wheel molecular cluster. W
remark that Eq.~3.5!, rewritten as xN /x`5(12uN)/(1
1uN)5tanh@N/(2j)#, gives a simple expression for th
finite-size scaling function for the susceptibility.

IV. COMPARISON WITH EXPERIMENT

The molecular ferric wheel (@Fe~OCH3!2~O2CCH2Cl!#10)
is one of a variety of polynuclear metal complexes that h
been synthesized3,4 in recent years. Prepared as powd
samples, the individual molecules appear to make indep
dent contributions to the magnetic susceptibility, i.e., the
tercluster magnetic interactions are thought to be negligi
The source of the magnetic properties of a given molec
are the ten paramagnetic Fe31 ions uniformly spaced along
ring-shaped structure. The spin angular momentum of
Fe31 ion is S55/2, its orbital angular momentum i
quenched, and thus the value of theg factor isg52. It has
been established4 that these ten ions interact with neare
neighbor antiferromagnetic isotropic Heisenberg spin
change. That is, the magnetic properties can be describe
terms of the Hamiltonian~2.1!, where the exchange interac
tion energy~in units of kB! has been estimated4 to be ap-
proximately J5214 K. In the corresponding classica
Heisenberg model, Eq.~2.18!, the associated values of th
interaction parameters areJc'2122.5 K and mc

52A35mB , respectively. It should be noted that the assig
ment of the above numerical value ofJ was made in Ref. 4
by comparing experimental susceptibility data to the pred
tions of two theoretical models. The first was the classi
Heisenberg model,~2.18!, for an infinite chain of spins, and
d 09 Apr 2001 to 147.155.4.75. Redistribution subject
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the second was a quantum-mechanical calculation perfor
for an 8-spin ring described by the~quantum! Heisenberg
model ~2.1!.

In Fig. 5 we show unpublished experimental molar su
ceptibility data~1 symbols! which were obtained8 at Uni-
versitá di Firenze for a powder sample in a 1 T magnetic
field. This data agrees quite well with that reported in Ref
for 0.3 T. We estimate that the peak value, 0.2072 emu/m
occurs at the temperatureT560 K. We then required that the
exact theoretical formula for the molar susceptibility, starti
from the zero-field expressions~2.13a! and~2.14!, also have
its peak at this temperature. This requirement is met u
adopting the valueJ'214.114 K, which is very close to the
previous4 estimate. In Fig. 5 the solid curve is the predictio
of the exact theory for the molar susceptibility, multiplied b
an overall constant, 0.9728, so as to pin the peak theore
value at the peak measured value, 0.2072 emu/mol.@The
molar susceptibility is obtained by multiplying Eq.~2.13a!,
the susceptibility per spin, by 10NA , where NA is
Avogadro’s number, since each cluster contains ten magn
ions.# Thus, we find that the theoretical value for the mo
susceptibility is 2.8% larger than the corresponding exp
mental value. We believe that this agreement is quite sa
factory given the fact that the experimental data is affec

FIG. 5. Molar susceptibility~experimental and classical Heisenberg sy
tems! versus temperature for the ferric wheel molecular cluster: Experim
tal data for a magnetic field of 1 T~1!; exact theory, ring,~solid curve!;
approximate theory, ring~long dashes!; exact theory, infinite chain~short
dashes!. Also shown are values ofTx(T). This quantity will approach a
constant limiting value,'43 emu K/mol, in the high-temperature regim
~Curie’s law!. As explained in Sec. IV, each of the theoretical expressio
for the molar susceptibility has been multiplied by a numerical factor
0.9728 in order that the peak of the solid curve equals that of the exp
mental data~0.2072 emu/mol!.
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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by the external magnetic field and it has been assumed
the powder sample was composed of identical molecules.
differently, this level of agreement between theory and
periment affirms the high degree of purity of the experime
tal powder sample, pictured as identical, unblemished fe
wheels each incorporating ten Fe31 ions.

Also shown in Fig. 5 are the approximate molar susc
tibilities derived from Eq.~3.5! ~long dashes!, and from the
infinite-chain classical Heisenberg antiferromagnet~short
dashes!, i.e., proportional to (11u)/@T(12u)#. All of the
theoretical formulas are for the zero-field molar suscepti
ity and each has been multiplied by the same overall mu
plicative constant given above. The close agreement betw
the infinite chain susceptibility and the approximate susc
tibility ~3.5! is to be expected since these two quantities d
fer by terms of orderu8, and even for such a low tempera
ture as T550 K we have u8'0.02. For increasing
temperatures this difference rapidly decreases to zero. W
could not be anticipated, however, without evaluating E
~2.14!, is the close agreement between the exact suscep
ity of the finite Heisenberg ring and the approximate susc
tibility, Eq. ~3.5!. Furthermore, inspecting Fig. 5 one se
that below approximately 40 K, the molecular ferric whe
susceptibility cannot be accurately described by the class
Heisenberg model. For this system, therefore, there is
advantage to the exact susceptibility~2.14! over the simple,
approximate form~3.5!.

We have also included in Fig. 5 the values of the qu
tity Tx(T). At sufficiently high temperatures this quantit
per mole, must approach a constant limiting value~Curie’s
law!, given by approximately 43 emu K/mol. More speci
cally, in the high-temperature regime one can ignore all
the functionsf l(K) in Eqs.~2.5! and ~2.14!, since for small
values of K one has@see Eq.~10.2.5! of Ref. 17# f l(K)
5O(Kn), except forf 0(K)'1. It is then straightforward to
derive the first two terms of the high-temperature expans
of the molar susceptibility, in powers ofuJu/(kBT), as

Tx→NA~gmB!2
S~S11!

3kB
F12

u

T
1O~1/T2!G , ~4.1!

where u[2uJuS(S11)/(3kB)'82.33 K is known as the
paramagnetic Curie temperature. The excellent fit betw
experiment and the exact formula forTx(T) even at very
low temperatures is of course due to the factorT which
minimizes the differences inx(T). Nevertheless, if nothing
else, the excellent fit over the entire temperature range sh
emphasizes that an isotropic nearest-neighbor Heisen
model of spins on a finite ring provides an excellent fram
work for explaining the magnetic properties of the fer
wheel. It is remarkable that a synthesized material sho
adhere so closely to the model.

V. DISCUSSION

This article has had two purposes. First, we have de
onstrated~see Fig. 5! that a classical treatment of Heisenbe
spins situated on a small ring leads to results in excel
agreement with the measured magnetic susceptibility of
ferric wheel molecular cluster for all but low temperature
Downloaded 09 Apr 2001 to 147.155.4.75. Redistribution subject
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The classical approximation consists of replacing the qu
tum spin operators with vectors of lengthAS(S11) that are
free to point in any direction. For the Fe31 spins of the ferric
wheel,S5 5

2. As discussed in Sec. IV, we have fit the com
puted results to the experimental data, first by adjusting
exchange constantJ so that the temperature associated w
the peak in the computed susceptibility agreed with that
experiment, and second, by adjusting an overall multipli
tive constant so that the value of the theoretical susceptib
coincided with experiment at one temperature, that of
peak. The resulting value ofJ is quite close to previous4

estimates, obtained with other models. Furthermore, for te
peratures above that of the peak, the theoretical susceptib
is in excellent agreement with the measured values. We n
however, that even without making the peak values ag
using an adjustable parameter, our absolute determinatio
the molar susceptibility agrees with experiment to with
3%. We believe this amply confirms the utility of the class
cal approximation to predict the susceptibility for all but lo
temperatures. We reiterate, we also believe that this leve
agreement affirms the high degree of purity of the expe
mental sample, pictured as identical, unblemished fe
wheels.

The second purpose of this article was to demonst
the remarkable efficacy of the approximation~3.1! to the
two-spin correlation function. We approximated the exa
correlation function, given by Eq.~2.7!, by a sum of two
terms: The first term implies exponential decay forCN(n)
for unu!N, whereas the second term ensures that the cy
property given by Eq.~2.3!, CN(n)5CN(N2n), is obeyed.
We then used the approximate correlation function to obt
an associated approximant for the zero-field susceptibi
Eq. ~3.5!. The form listed for Eq.~3.5! is given in terms of
the Langevin function,u(K), which is related to the exac
correlation length,j, by uuu5exp(2j21). As we have seen
this approximation gives results for the susceptibility in e
cellent agreement with the exact quantity for all but very lo
temperatures. As discussed in Sec. III, Eq.~3.5! represents
the susceptibility upon using the simplest choice of the fu
tion n(N,K) in Eq. ~3.1!, namely its large-N limiting form,
Eq. ~3.2!, which turns out to beu(K). A greatly improved
choice is provided by Eq.~3.4!. However, in view of the
excellent agreement for the susceptibility already achie
using Eq.~3.2!, it seems pointless to invoke the ultra-hig
accuracy offered by Eq.~3.4!.

In short, we have shown that classical Heisenberg sp
can approximate extremely well the observed magnetic
havior of small quantum Heisenberg rings. We have a
shown that, instead of employing the complicated machin
of Joyce’s exact solution to the classical Heisenberg ri
one can obtain results of high accuracy making use of
extremely simple approximants discussed in this artic
Hopefully this will simplify the task of comparing experi
mental data with the predictions of the classical Heisenb
model. More generally, we hope that as molecular magn
systems continue to be explored for their possible appl
tions, the approximants discussed here will prove usefu
accelerating the development of a nanomagnetic technol
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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